IEA ACTIVITIES TOWARDS STANDARDIZATIONS FOR DAYLIGHT SYSTEM CHARACTERIZATIONS AND HOURLY RATING METHODS

David Geisler-Moroder Bartenbach

Fraunhofer IBP

VELUX Daylight Symposium 2019 9 October 2019, Paris

DAYLIGHTING DESIGN

COMPLETE LIGHTING SOLUTIONS

MATERIALS CONSULTATION

ARTIFICIAL LIGHTING DESIGN

RESEARCH & DEVELOPMENT

MODEL BUILDING & VISUALISATION

OUR RANGE OF SERVICES

Tailored to suit your needs

ARTIFICIAL LIGHTING DESIGN COMPLETE LIGHTING SOLUTIONS

ARTIFICIAL LIGHTING
DAYLIGHTING DESIGN
MODEL BUILDING & VISUALISATION

ARTIFICIAL LIGHTING
DAYLIGHTING DESIGN
RESEARCH & DEVELOPMENT
MODEL BUILDING & VISUALISATION
MATERIALS CONSULTATION

OUR RANGE OF SERVICES

Tailored to suit your needs

Fraunhofer

Energy in Buildings and Communities Programme

IEA SHC Task 61 / EBC Annex 77

Integrated Solutions for Daylight and Electric Lighting

From component to user centered system efficiency

IEA SHC Task 61 / EBC Annex 77 Integrated solutions for daylight and electric lighting

From component to user centered system efficiency
Operating Agent: J. de Boer, Germany

Subtask A

B. Matusiak, Norway
User Perspective,
Requirements

Subtask B

M. Fontoynont,

Denmark
Integration and
optimization of
daylight and electric
lighting

Subtask C

D. Geisler-Moroder,
Austria
Design support for
practioners

(Tools, Standards, Guidelines)

Subtask D

N. Gentile, Sweden
W. Osterhaus,
Denmark
Lab and field study
performance tracking

Joint Working Group

Evaluation method for integrated lighting solutions

Virtual reality (VR) based Decision Guide

B

Subtask C: Design Support for Practitioners

Objective

Focus on the application of technical innovations in the field of integrated lighting solutions in practitioners' workflows. Bring findings onto the desktops of designers by integration into widely used software tools, standards and codes, and design guidelines.

- C.1 Review of state of the art design workflows
- C.2 Standardization of BSDF daylight system characterization
- C.3 Spectral sky models for advanced daylight simulations
- C.4 Hourly rating method for integrated solutions

Hourly Rating Method

Relation to BACS

Translation into ISO 16484 logic

- "Emulation" / Modeling of inputs & outputs
- BMS: BACS logic
 - Sensors & Actors
 - Functions

Formal "Room Control Schematic" according to ISO 16484

Sensitivity Analysis

Geometry Ev 1490 lx DGP 0.26

Cd/m2 170000 5011.872 2511.886 1258.925 630.957 316.227 158.489 79.432 39.810 19.952 10

Klems aBSDF Ev 3340 lx DGP 0.59

Klems BSDF Ev 2650 lx DGP 0.35

tt46 BSDF Ev 1530 lx DGP 0.26

Established data formats

name	input resolution	output resolution	currently used by software
WINDOW6 standard basis	Klems (145)	Klems (145)	WINDOW7, Relux, Radiance
IEA 21	Tregenza (145)	5deg full, i.e. 5°x5° (1297)	Relux, Radiance, Dialux
Shirley-Chiu	variable (limitation through data size)	variable (limitation through data size)	Radiance

XML file format

```
<?xml version="1.0" encoding="UTF-8"?>
<Optical>
               <Layer>
<Material>
                       (Name>DALEC_UL_00deg_1u2panes
(Name>DALEC_UL_00deg_1u2panes
(Nanufacturer>Bartenbach
(Thickness unit="Meter">0.128</Thickness>
               <IncidentDataStructure>Columns</IncidentDataStructure>
                        <AngleBasis>
                       <AnqleBasisName>LBNL/Klems Full</AngleBasisName>
                               <AngleBasisBlock>
<Theta>0</Theta>
                                <nPhis>1</nPhis>
                                <ThetaBounds>
                               <LowerTheta>@</LowerTheta>
                               <UpperTheta>5</UpperTheta>
</ThetaBounds>
                               </Pre>

/AngleBasisBlock>

/Theta>10
/Theta>
                                <nPhis>8</nPhis>
                                <ThetaBounds>
                                       <LowerTheta>5</LowerTheta>
                                        <UpperTheta>15</UpperTheta>
                                </ThetaBounds>
                               </AngleBasisBlock>
```


Venetian blinds

Task	Simulation method	System characterization / BSDF
Daylight Factor	Raytracing possibly mkillum continuous sky model	(a) Geometry(b) Low-res BSDF
Point-in-time illuminance for overcast / sunny sky	Raytracing continuous sky model	(a) Geometry(b) Low-res BSDF
Point-in-time glare metric for overcast / sunny sky	Raytracing peak extraction continuous sky model	(a) High-res BSDF(b) Low-res BSDF (with peak extraction)
Point-in-time rendering for overcast / sunny sky	Raytracing peak extraction continuous sky model	(a) High-res BSDF(b) Low-res BSDF if peak extraction
Annual illuminance metric	DC-method or 3-PM	Low-res BSDF
Annual glare metric	5-PM peak extraction	Low-res BSDF and (a) Geometry or (b) High-res BSDF or (c) Low-res BSDF (only if PE)

B

Aim

The "right" system data for

- Transparent systems¹
- Woven shades
- Venetian blinds
- Specular blinds / grids
- Micro-/Nano-structured systems
- Prisms, LCPs

¹ Clear / electrochromic glazing, films

Task Force "Revision of ISO 10916"

Proposed new scope

- extend ISO 10916 to an hourly based (annual) estimation of the daylight supply in buildings
- based on location and local climate data
- include facades with and without shading systems
- allow to model different daylighting control strategies including linkage with electric lighting systems (e.g. indoor occupation sensing)
- appropriate interface with BACS formalism

Acknowledgments

Funding by the Federal Ministry of Austria for Transport, Innovation and Technology through the project

"IEA SHC Task 61 / EBC Annex 77"

managed by the Austrian Research Promotion Agency FFG is gratefully acknowledged.

Tederal MinistryRepublic of Austria

Transport, Innovation and Technology

Funding by the German Federal Ministry of Economic Affaires and Energy through the project

"EnOB: MEET Lichtplanung - Methoden zur effektiven Erschließung von Energieeinspar-potentialen in der Kunst- und Tageslichtplanungs-praxis von Gebäude"

managed by the Project Management Jülich PTJ is gratefully acknowledged.

